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PLANE-STRZSS ANALYSIS OF AN ED2E-STIFFENED 

RECTANGULAR PIATE SUBJECTED TO LQADS 

AND Tl3MPEFWTRE GRADIENTS 

By Charles Liibove, Dalpa t  Panchal, and Frank Dunn 

SUMMARY 

A plane-stress analysis  i s  presented f o r  an i so t rop ic  or orthotropic 
e l a s t i c  rectangular p l a t e  bounded by four edge s t i f f e n e r s  and subjected t o  
prescribed temperature d i s t r ibu t ions  and boundary loads. The s t i f f e n e r s  
are assumed t o  have zero bending s t i f f n e s s  but f i n i t e  extensional s t i f f -  
ness. They may be e i t h e r  uniform or tapered i n  such a way as t o  develop 
a constant (or non-constant but prescribed) cross-sect ional  stress. i n  
the l a t t e r  case the required form of t ape r  i s  determined along with the 
stress. 

The solut ion i s  by means of Fourier s e r i e s .  Its convergence and 
f e a s i b i l i t y  a r e  t e s t e d  by means of two numerical examples, one a thermal- 
stress problem, the other a "shear-lag'' problem. 

INTRODUCTION 

A plane-stress analysis ,  by means of Fourier s e r i e s ,  i s  presented f o r  
an e l a s t i c  rectangular p l a t e  bounded by four edge s t i f f e n e r s  and subjected 
t o  prescribed loads and temperature d i s t r ibu t lons .  The p l a t e  Ray be iso-  
t r o p i c  or orthotropic,  with e l a s t i c  constants t h a t  are independent of 
posi t ion and, i f  orthotropic,  with axes o f  e l a s t i c  symmetry p a r a l l e l  t o  
the edges. The four edge s t i f f e n e r s  are assixned t o  have zero bending s t i f f -  
ness but f i n i t e  extensional s t i f f n e s s  and t o  be i n t e g r a l l y  attached t o  the 
p l a t e  along t h e i r  o r ig ina l ly  s t r a i g h t  centroidal  axes. The s t i f f e n e r s  a r e  
e i t h e r  uniform or tapered i n  such a way as t o  have constant (or noc-constant 



but prescribed) cross-sect ional  stress; i n  the lat ter case the required form 
of taper of the s t i f f e n e r s  i s  determined along with the  s t r e s ses .  

More de ta i led  descr ipt ions of the s t ruc ture  follow, along with the  
r e su l t s  of the analysis .  The symbols used are compiled and defined i n  
appendix A. The details of the  analysis ,  not required f o r  t h e  understanding 
and use of the  r e su l t s ,  are given i n  appendixes 3 and C.  

This invest igat ion was  conducted a t  Syracuse University with the  
f inanc ia l  ass i s tance  of the  National Aeronautics and Space A h h i s t r a t i o n ,  
under research grant NsG-385.  

DETAILD DESCRIPTION OF STRUCTUm 

Geometry and coordinate system. - The p la t e  and s t i f f e n e r  combination 
is  shown schematically i n  f igure 1. The p l a t e  has a length of a and a 
width of b. Any point i n  the  p l a t e  is iden t i f i ed  by i t s  coordinates x and 
y i n  a Cartesian reference frame whose o r ig in  i s  a t  one corner of the  p l a t e  
and whose axes coincide with two adjacent edges, as shown i n  the f igure.  The 
cross-sect ional  areas  of the s t i f f ene r s  are denoted by A1(y), A2(y), A (x), 

and A (x) f o r  the  s t i f f e n e r s  located a t  x = 0, x = a, y = 0, and y = b respec- 

t ive ly ;  however it is t o  be understood t h a t  these functions e i t h e r  a re  con- 
s t an t s  o r  have whatever form is  necessary t o  produce constant (or non-constant 
but prescribed) stress i n  each s t i f f ene r .  

3 
4 

Loadin - The assumed loading i s  a l s o  shown i n  f igure 1. It consis ts  of 
forces P 

of the  s t i f f e n e r s  and d i s t r ibu ted  tensions Nl(y), N2(y), N (x),  N4(x) and shear 

flows ql(y), q2(y), q3(x), q4(x) applied along the  outside edges of t he  s t i f -  

feners: The d is t r ibu ted  tensions and shear flows have dimensions of force per 
un i t  length. The loading as a whole i s  assumed t o  cons t i tu te  an equilibrium 
system. Because the s t i f f e n e r s  have negl igible  bending s t i f fnes s ,  the d i s t r i -  
buted tensions a r e  transmitted d i r e c t l y  through them i n t o  the  edges of the  
plate ,  however the  shear flows a re  not transmitted unchanged t o  the edges of 
the plate .  

0 , Pl(b), e t c .  applied t o  the  centroids of the  end cross sect ions 

3 
* 

Thermal strains ' .  - The temperature d i s t r ibu t ion  and hence the  t h e m 1  
s t r a i n s  are assumed t o  be known throughout the  s t i f f e n e r s  and p la te .  The 
thermal-strain notat ion i s  indicated i n  f igure 2 and is  as follows: The 
thermal s t r a i n s  i n  the  s t i f f e n e r s  are denoted by e,(y), e,(y), e (x), and 

e (x) for the  s t i f f e n e r s  whose locations are x=O, x=a, y=Q, y=b respectively; 

the  p l a t e  thermal s t r a i n s  are ex(x,y) and eTr(x,y) i n  the  x and y-directions 

3 
4 

respectively.  A l l  of these s t r a i n s  
some datum temperature d i s t r ibu t ion  
stress-free. Note t h a t  there  i s  no 

J 

are assumed t o  be measured r e l a t ive  t o  
for which t h e  s t ruc ture  i s  known t o  be 
thermal shear s t r a i n  r e l a t ive  t o  the  x- 

2 
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and y-axes s ince these axes are parallel t o  the direct ions of e l a s t i c  sym- 
metry. 

S t r e s s - s t r a in  r e l a t i o n s  and e l a s t i c  constants. - Figure 3 indicates  t he  
notation employed for the  i n t e r n a l  forces i n  the s t i f f e n e r s  and plate .  P,(y) 
P2(y), P3(x), P (x) denote the  cross-sectional tensions and el(y), e2(y), e3(x), 

e4(x) t he  t o t a l  s t r a i n s  (thermal plus e l a s t i c )  i n  t h e  s t i f f e n e r s  located a t  
x = 0, x = a, y = 0, y = b respectively.  
per u n i t  length) are represented by Nx(x,y) and N (x,y) f o r  normal s t r e s s  and 

N 

s t r a i n s  are symbolized by eX(x,y), ~ ~ ( x , y ) ,  and y 

s t i f f e n e r s  are assumed t o  have t h e  form 

4 

The p l a t e  stress r e su l t an t s  (force 

Y 
(x,y) f o r  shear s t r e s s ,  as shown i n  figure 3. The corresponding t o t a l  

Xy 
(x,y). 

XY 

With t h i s  notation established, t h e  s t r e s s - s t r a i n  r e l a t ions  f o r  t he  

D I i e i = e  + -  i AiEi 

with the  Young's moduli E and E2 independent of y, E and E independent 
of x. 

3 4 
The p l a t e  s t ress-shrain r e l a t ions  are taken t o  be 

= ex + CINx - C N 
3 Y  

E = e + C2Ny - C3Nx 
Y Y  

yxy= c4Nxy 

where the  compliances C1, C2, C3, and C4 a r e  independent of x and y. 

the p l a t e  i s  homogeneous and isotropic ,  with thickness h, Young's modulus 
E, and Poisson's r a t i o  v ,  then 

If 

-1 c1 = c2 = (m) 

c3 

c4 

= v(Eh)-l 

= 2(l+v) 

3 
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SERIES EXPANSIONS FOR PRESCRIBED LOADS AND THERMAL STRAINS 

The r e s u l t s  of the present analysis ,  t o  be discussed short ly ,  consis t  
of formulas f o r  the  s t i f f e n e r  and p l a t e  s t r e s ses  i n  terms of the given load- 
ing and thermal-strain d is t r ibu t ion .  
do not appear e x p l i c i t l y  i n  these formulas; it is  r a the r  the  Fourier coef- 
f i c i e n t s  of these quant i t ies  t h a t  a r e  required. 
quirement, it is  assumed t h a t  the  given d i s t r ibu ted  loadings can be expressed 
i n  Fourier s e r i e s  of the  following form, with known coef f ic ien ts :  

However, the  loading and t h e m 1  s t r a i n s  

In  an t ic ipa t ion  of t h i s  re-  

N 
N2(Y) = ngl B; s i n  (nny/b) 

M 
N (x) = C B:sin ("/a) 3 m = l  

M 
N4(x) = m& B;" s i n  (mlrx/a) 

N 
ql(Y) = n& cos (nny/b) 

M 
m=O q&(x) = c cos (mnx/a) 

Similarly, if there  a r e  any d iscont inui t ies  i n  thermal s t r a i n  between the  
s t i f f e n e r s  and the  p l a t e  edges, these are assumed t o  be known i n  the form 
of the  following Fourier series : 

4 



!! TA s i n  (nny/b) f o r  

N 

e,(y) - ey(O?Y) = n=l  

eg(y) - ey(a,y) = n=l  C s i n  (nry/b) f o r  

M 
e,(.) - e (x,O) = C T"' s i n  (mrrx/a) f o r  

X m = l  m 

M 
e,(.)- - e (x,b) = 2 Ti'' s i n  (mnx/a) f o r  

X m = l  

Finally,  

following s e r i e s  i n  the  open region 0 < x < a, 0 < y < b: 

a2e /b2 + a2e /&r2 i s  assumed t o  be representable by the 
w Y X 

F in i te  upper limits M and N a r e  shown f o r  the  summation indexes i n  
equations (3) t o  (6) i n  expectation of the  f ac t  t h a t  it w i l l  normally 
be necessary t o  use truncated r a the r  than i n f i n i t e  s e r i e s  f o r  prac t ica l  
computational reasons. 

I n  the analysis  of t he  constant-area-stiffeners case i n  appendix B 
the  Fourier coef f ic ien ts  of t he  loading and thermal s t r a i n s  w i l l  appear i n  

R i "  f o r  convenience and are defined by equations (B66) and ( ~ 6 7 ) .  
ce r t a in  groups. These groups a re  designated by the  le t ters  RA? R''? R I I I  m '  

The Fourier coef f ic ien ts  appearing i n  R"" f o r  the  evaluation of t he  RA, R:? R"' 
def ini t ions.  For example, m' m 

b 

€5' n a  = s Nl(y) s i n  dy 

0 

equations (3) t o  (6) and required 
can be determined from the  usual 

b 

(7) 1 
5 



where 6.. Integrat ion by pa r t s  i n  'the last equation 
gives tge  following a l t e rna te  formula which permits Tm t o  be evaluated 

from the  first der ivat ives  of e and e instead of t he  second der ivat ives:  

is f ionecker 's  delta. 0 

Y X 

s i n  E ciy d~ 
nrr 4 
b ab b a 

0 0  
( 9 )  

Equation (9) may be used f o r  dkcontinuous e o r  e provided t h a t  ?e h 
and & /& a re  regarded t o  be in f in i t e ,  i n  the  manner of the Dirac de l t a  

finc*ii.onj a t  the  l o c i  of points of discontinuity.  and e are con- 

tinuous i n  the  region 0 c x  5 a, 0 2 y 5 b, fu r the r  in tegra t ion  by pa r t s  
gives 

Y X y/ 
x. 

Y-- x 

b 
mlr 4 1 [ey(a,Y) C O S  mJr - ey(O,y)] s i n  dy - 

T m n - - - -  a ab 
0 

m m  e '(x;y> s i n  - s i n  d~ dy Y a 
0 0  

mJtx - b ab Jb [ex(x,b) cos nJr - ex(x,O)] s i n  - dx 

0 

a b  

RESULTS FOR CONSTANT-AREA STIFFENERS 

Series  f o r  the p l a t e  and ,$iffeneygtresses .- The analysis  i n  appendix 
B gives the  p l a t e  s t r e s s  resu l tan ts  and s t i f f e n e r  forces i n  the  form of 
s e r i e s .  

and N equations (Bl7) the  s t i f f e n e r  forces.  It should be noted t h a t  the 
XY 

s e r i e s  given f o r  N 

Equations (B21) t o  (B27) give the plate stress resu l tan ts  Ny, Nx, 

Ln the  i n t e r i o r  of  the p la te ,  equation (B21), i s  not 
Y 

6 



va l id  along the edges; separate s e r i e s ,  equations (B22) and (B2!3), a r e  
given f o r  evaluating M along the edges x = 0 and x = a; along the  other 
two edges, y = 0 and f= b, N is  equal t o  N (x) and N (x) respectively.  

Analogous remarks apply t o  Nx. Similarly the s e r i e s  f o r  the s t i f f e n e r  
forces, equations ( B l T ) ,  a r e  not va l id  a t  the  ends of t he  s t i f f ene r s ;  
t h i s  imposes no g rea t  hardship, however, s ince the  s t i f f e n e r  end forces 
are known as pa r t  of the given loading. 

Y 3 4 

Evaluation of s e r i e s  coeff ic ients .  - In  order t o  use these s e r i e s  f o r  
numerical- calculat ion of - -s t resses ,  one m u s t  first evaluate the coe f f i c i en t s  

t cnJ 11 g ' ,  g", cmn, gmn9 jm, SA, s l l  n9  , and s z '  appearing i n  them. The 

first four groups of coe f f i c i en t s ,  namely cA9 c;, g;, g i ,  are the  key t o  a l l  

the others,  s o  t h e i r  evaluation w i l l  be discussed f i rs t .  

m m  

The c:, c i ,  g;, and g l  a r e  defined by the  system of equations ( ~ 6 1 )  t o  

E'', g;, g i  and noting t h e  de f in i t i ons  i n  equations (B65). 
( ~ 6 4 )  and can be determined by solving these 2N + 2 M  equations simultaneously 
f o r  t h e  E' AS an 

a l t e rna t ive ,  equations (B7O) may be solved simultaneously f o r  t he  g; and g"; m 
the c '  and c fr  are then obtained d i r e c t l y  from equations (B68). 

P t i v e  1s p r e a r a b l e  because it requires  the  solut ion of only- 2M simultaneous 
equations, regardless of how large a value i s  se l ec t ed  f o r  N. 

n' 

This a l t e rna -  

If the s t ruc tu re ,  loading and thermal s t r a i n s  a r e  symmetrical about t he  
The c:, ci, g;, 

are then defined by equations ( ~ 7 8 )  and the simultaneous system of 

center l ine y = b/2, considerable s implif icat ion r e s u l t s .  

and 
M + %+ 1 equations (B61') t o  (€363'). A s  a preferable a l t e r n a t i v e  t o  equa- 
t i o n s  ( ~ 6 1 ' )  t o  ( ~ 6 3 ' ) ,  t he  M equations (B7O') may be solved simultaneously 
f o r  t h e  g', af ter  which the  G, c:, and ct '  are obtained d i r e c t l y  from equa- 

t i ons  ( ~ 7 8 )  and (B68). I n  t h i s  a l t e r n a t i v e  the  s i z e  of N again does not 
influence the  number of equations t h a t  have t o  be solved simultaneously. 

n 

If both y = b/2 and x = a/2 a r e  axes of symmetry of t he  s t ruc tu re ,  
loading, and thermal s t r a ins ,  then equations (B79), (~61"), (E63") may 
be used t o  obtain the  ci, c;, g;, gk, where (~61") and (B63") represent 

(M + N + 2)/2 simultaneous equations. 
mined from fewer (namely (M + 1)/2) simultaneous equations by using t'ne 
system (B7O") t o  solve f o r  the 
f i c i e n t s  d i r e c t l y  from equations (B79) and ( ~ 6 1 " ) .  

The quan t i t i e s  may a l s o  be deter- 

and then obtaining t h e  remaining C O e f -  

With t h e  c:, c i ,  g;, g: known, eqcations (B59), ( B ~ o ) ,  (€3581, and 

(B56) will furnish t h e  remaining coe f f i c i en t s  d i r e c t l y .  

I 

Limiting -.  case: - _--_. l s e  s t i f f e n e r  areas .  - If the  s t i f f e l l e r  cross- 
S e c t i o n a l a r e a s  are assumed t o  approach i n f i n i t y  while maintaining constant 

7 



* 
r a t i o s  with each other , t he  solut ion takes on a much simplified form 
characterized .by the f a c t  t h a t  it is no longer necessary t o  solve simul- 
taneous equations. The quant i t ies  c '  

equations (Bm) d i r e c t l y  on t h i s  l imit ing case. 

c i ,  gh, and g" a r e  defined by n' m 

In equations (€380) the  coeff ic ients  of H;/(AIE1) e t c . , a r e  i n  e r r o r  
by terms of t he  order of (a3E 

which these coe f f i c i en t s  a r e  correct  t o  terms of t he  order of (a3E 

i s  represented by equations ( ~ 8 1 )  t o  (~84). This more accurate solut ion 
s t i l l  r e t a ins  some of the s implici ty  of equations (B80), i n  the sense t h a t  
it too does not require the solut ion of simultaneous equations. 

A E )-l. A more accurate solution, i n  11 1 1 
A E )-', 11 1 1 

Numerical examples. - The foregoing r e s u l t s  w e r e  used t o  obtain 
numerical stress data  f o r  two i l l u s t r a t i v e  problems, one a thermal-stress 
problem involving non-uniform temperature d i s t r i b u t i o n  without any applied 
loads, the second a "shear-lag" problem involving the  d i f fus ion  of loads 
from the s t i f f e n e r  ends i n t o  the plate .  The two problems are shown 
schematically i n  f igure 4. 

In  both problems the  p l a t e  i s  square (b = a )  and isotropic ,  with 
Young's modulus E, Poisson's r a t i o  v, and thickness h .  The four s t i f -  
feners a r e  assumed t o  be i d e n t i c a l  and t o  have t h e  same Young's modulus 
as the plate .  ?"ne symbol A w i l l  designate the  common values of A 
A and A4. 

In the thermal stress problem (f igure 4(a) ) ,  the s t i f f e n e r s  a r e  
a t  a uniform temperature, say zero, while t he  p l a t e  has a "pillow-shaped" 
temperature d i s t r i b u t i o n  of the form e s i n  (fix/.) s i n  (xy/a); thus 8 
denotes the temperature r i s e  of the p l a t e  center  r e l a t i v e  t o  the edges. 
The symbol a w i l l  denote the coe f f i c i en t  of thermal expansion of t he  
materials.  

1' A2' 
3' 

In  the shear-lag problem (Figure 4 ( b ) ) ,  t he  temperature is  uniform 
and the loading consis ts  of i d e n t i c a l  tension loads of  magnitude P applied 
t o  the end cross sect ions of the s t i f f e n e r s .  

In  thqse problems the  s t ruc tu re ,  loading, and thermal s t r a i n s  a r e  
symmetrical about both center l ines ,  namely x and, y . = a12: 
(B7O") may be used f o r  t h e i r  analysis .  In  these equations R' and R"' 
take the  following forms, according t o  equations (1366) and (B67),for 
the thermal-stress problem: 

Hence equations 

n m 

__ _ _  * 
More precisely,  if the  dimensionless quan t i t i e s  (a3E A . E . ) - 1 9  with 11 1 1 
i = 1, 2, 3 ,  4, are assumed t o  approach zero while maintaining constant 
r a t i o s .  

8 
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M 
R ' = -  C K n m = l  mn 

where 

Thus 

Kmn = mnf12Tmn/ (a2Em) 

-2Wf12/a2 when m = n = 1 

0 otherwise 
Tmn = {  

For the  shear-lag problem, on the  other hand, 

RI = R I I I  = 4 ~ / a  n m 

f o r  a l l  (odd) n and m. 

The r e s u l t s  of the calculat ions a r e  shown i n  the  figures, s t a r t i n g  
with f igure  5 ,  through dimensionless p lo t s  of  the  p l a t e  stress resu l tan ts  

force P (x-). (In view of the symmetry which e x i s t s  about t h e  p l a t e  diag- 

onals i n  these examples, as w e l l  a s  about the  p l a t e  center l ines ,  the graphs 
of P2(y), P1(y), and P4(x) a r e  a l l  i den t i ca l  with the graph f o r  P (x).) 
The r e s u l t s  shown are based on calculat ions with M = N = 39 . As a check 
on the  convergence, the  calculat ions w e r e  repeated with M = 3 9 ,  N = 79 ;  
the  r e s u l t s  agreed with t h e  previous ones t o  the  extent  t h a t  any differences 
would be indiscernible  on the  graphs shown. The dot ted curves i n  some of 
the  f igures  represent approximate solut ions obtained by using equations (B80) and 
(~81) t o  (~84)~ which apply when the  s t i f f e n e r  cross-sect ional  areas  are 

as functions of x f o r  f ixed values of y, and the s t i f f e n e r  
Nx' "Y' and XY 

3. 

3 '  

9 
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large compared t o  the p l a t e  cross-sect ional  area. It is  .seen t h a t  the 
l a rge - s t i f f ene r  approximtion is  qui te  good f o r  t he  plate stresses when 
the  a r e a - r a t i o  parameter 4ah/(n2A) i s  0.1 o r  smaller; it i s  of course 
exact when 4ah/(n2A) = 0. 

The thermal-stress r e s u l t s  indicate  f i n i t e  shear stress i n  the corner 
of t h e  p l a t e  f o r  a l l  values of t h e . p r a m e t e r  4ah/(n2A). However, t h e  shear- 
l a g  problem exh ib i t s  i n f i n i t e  corner shear stress f o r  the same values of the 
parameter 4ah/(n2A). 
ness ( i n  pa r t i cu la r ,  r i g i d  connections where t h e  s t i f f e n e r s  m e e t  a t  the corners) 
would lead t o  zero shear stress a t  the corner and therefore,  i n  a neighborhood 
near the corner, t o  shear s t r e s s e s  which might be considerably d i f f e ren t  from 
those which the  present analysis  predicts .  

In an a c t u a l  s t ructure ,  f i n i t e  s t i f f e n e r  bending s t i f f -  

Accepting the  premise of zero bending s t i f f n e s s  of t he  s t i f f e n e r s  o r  
hinged connections where the  s t i f f e n e r s  meet, it is  in t e re s t ing  t o  note t h a t  
i n  the thermal-stress problem the  maximum value of N i n  t he  p l a t e  does 

not always occur a t  t he  corner (see, f o r  example, f i gu re  5c) .  
XY 

The case 4ah/(n2A) = 0 represents the l imi t ing  case i n  which the sheet 
i s  i n f i n i t e l y  t h i n  by comparison with the s t i f f e n e r  cross-sect ional  dimen- 
sions.  In  t h i s  case the  end loads applied t o  t h e  s t i f f e n e r s  i n  the shear- 
l ag  problem should be transmitted unchanged throughout the lengths of t h e  
s t i f f e n e r s .  Thus i n  f igure 6(a) the value of P,(x)/P should be 1.0 f o r  a l l  

J 
./a, and NxA/(hP) should s imi l a r ly  be 1.0 f o r  a l l  x/a along the l i n e  y/a=O.O. 

The deviations from 1.0 shown i n  f igure 6(a)  are due t o  incomplete convergence 
associated with the use of f i n i t e  values of M and N. 

The calculat ions were performed on t h e  IBM 7070 computer a t  t h e  
Syracuse University Computing Center and required a t o t a l  of 50.5 minutes 
fo r  a l l  the r e s u l t s  shown. The simultaneous equations (B7O") were solved 
by the i t e r a t i v e  procedure of reference 2. The p l a t e  s t r e s s e s  were com- 
puted a t  x/a and y/a in t e rva l s  of 0.1 i n  order t o  p lo t  the  curves shown. 

RESULTS FOR CONSTANT-STRESS 
(OR PRESCRIBED STRESS) STIFFENERS 

For e f f i c i e n t  design, it may be desired t o  taper the s t i f f e n e r s  so  
as t o  achieve constant cross-sect ional  stress along the length of each one. 
In appendix C a general izat ion of t h i s - cond i t ion  i s  considered i n  which it 
i s  assumed t h a t  the tapers  are such as t o  produce prescribed, but not 
necessarily constant, cross-sect ional  s t r e s s  var ia t ions along the lengths 
of the s t i f f e n e r s .  

t he  prescribed s t r e s s e s  (posi t ive f o r  tension)  i n  the  s t i f f e n e r s  located 
a t  x = 0, x = a, y = 0, and y = b respectively.  

The symbols ul(y), u2(y), u3(x) and cr (x) represent 4 

In  t h i s  case it turns  out Once again t o  be unnecessary t o  solve 
simultaneous equations i n  order t o  compute the  p l a t e  stresses. Equations 
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(B33), (B34), (B36), and (B37), used i n  conjunction with equations (C2), 
give the  e;, c:, g:, and g i  d i r ec t ly ;  equations ( B ~ o ) ,  (B38), and (B56) 
then furnish the  jm, and equations (B21), (B24), and (B27) the  p l a t e  
s t r e s ses .  

The lengthwise va r i a t ions  of s t i f f e n e r  cross-sectional area needed t o  
produce the prescribed s t i f f e n e r  s t r e s ses  can be determined from equations 
( C 3 )  i n  conjunction with (C4) t o  ( C 7 ) .  

n COPJCTUDING RFsIARK3 

A plane-stress analysis ,  based on Fourier s e r i e s ,  has been presented 
f o r  t he  stresses i n a l i n e a r l y  e l a s t i c  i so t rop ic  or orthotropic rectangular 
p l a t e  bounded by four edge s t i f f e n e r s  and subjected t o  prescribed tempera- 
t u r e  d i s t r ibu t ions  and boundary loadings. The s t i f f e n e r s  are assumed t o  
be e i t h e r  uniform or tapered i n  such a way as t o  develop constant (or non- 
constant but  prescribed) stresses. The convergence and f e a s i b i l i t y  of t he  
analysis  have been t e s t e d  and found t o  be s a t i s f a c t o r y  i n  two numerical 
examples f o r  t he  case of uniform s t i f f e n e r s .  

The present analysis  d i f f e r s  from previous thermal-stress analyses 
of rectangular p l a t e s  by the  incorporation of edge s t i f f e n e r s .  It differs 
from previous "shear-lag" analyses by the  avoidance of extreme assumptions 
regarding the  p l a t e  s t i f f n e s s  o r  p l a t e  normal s t r e s s e s  i n  what i s  usual ly  
called t h e  transverse d i r ec t ion .  

However the present analysis  is a l s o  characterized by the  assumption 
of zero bending s t i f f n e s s  f o r  t he  s t i f f e n e r s  and t h e  absence of boundary 
conditions on displacement. The removal of these two l imitat ions would, 
it is  f e l t ,  be a worthwhile objective of fu r the r  research. Regarding the 
f i rs t  l imi t a t ion  i n  pa r t i cu la r ,  the inclusion of f i n i t e  s t i f f e n e r  bending 
s t i f f n e s s  and j o i n t  r i g i d i t y  where the s t i f f e n e r s  meet appears t o  be 
necessary i n  order t o  obtain r e a l i s t i c  estimates of shear stress i n  the 
neighborhoods of t he  corners. 

11 



APPENDIX A 

SYMBOLS 

Remarks: .(i) The subscr ipt  l ,2 ,3  o r  4 on a symbol f o r  a s t i f f ene r -  
r e l a t ed  quantity iden t i f i e s  the  s t i f f e n e r  locat ion as x = 0, x = a,  y = 0, 
o r  y = b respectively.  
(loads, thermal s t r a i n s ) ,  and combinations of such coef f ic ien ts ,  are gener- 
ally represented by c a p i t a l  le t ters  , while the  Fourier coef f ic ien ts  of 
i n i t i a l l y  unknown quant i t ies  (e .g. , i n t e r n a l  stresses) a r e  denoted by small 
letters. 

(ii) The Fourier coef f ic ien ts  of known quant i t ies  

a p l a t e  dimension i n  x direct ion;  see f igure  1 

a Fourier coef f ic ien ts  i n  s e r i e s  expansion f o r  t he  stress 
fhnction F(x,y); see equation ( ~ 1 6 )  

Fourier coef f ic ien ts  i n  series expansions f o r  F(0,y) , F(a,y) 
F(x,O), F(x,b) respectively; see equations (€314) 

s t i f f e n e r  cross-sect ional  areas 

mn 

I I  1 n 1 1 1 1  
a;,an,am ,am 

A1(y) ,A2(y) ,A3 (x) ,A4 (x) 

A 

b 

C mn 

c '  C1l ny n 

common value of the  above when a l l  four  s t i f f e n e r s  are 
iden t i ca l  and uniform 

p la t e  dimension i n  y direct ion;  see f igure  1 

Fourier coef f ic ien ts  i n  series expansions f o r  N 
N N respectively; see equations (3) and (7) 

Fourier coef f ic ien ts  i n  series expansion f o r  N (x,y); 

l"2' 
3" 4 

see equation (B21) Y 

Fourier coef f ic ien ts  i n  s e r i e s  expansions f o r  N (0,y) 
and N (a,y) respectively; see equation (B22) 

c '  C2 nsr/b, C" C2 nR/b 

p l a t e  compliances defined by equations (2) 

Y 

n n 

Fourier coef f ic ien ts  i n  se r i e s  expansion f o r  a 4 F/& 4. , 
see equation ( ~ 2 8 )  
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I 

i 

i mn 

LMn 
m, n, P, 9 

M 

S t i f f ene r  thermal s t r a ins ;  see 
f igure 2 

p l a t e  thermal s t r a ins ;  see f igure 2 

C 2  (,,/a 4 + (C4-2C3 ) (mJr/a * (nfl/b 2+C, (nrc/b 4 

value of above with m = 1 and n = 1 

Young's moduli of s t i f f e n e r s  

Young's modulus for s t i f f e n e r s  and i so t ropic  
p l a t e  when a l l  have the same Young's modulus 

s t r e s s  function f o r  plate;  see equation (€91) 

Fourier coef f ic ien ts  i n  se r i e s  expansion 
f o r  Nx(x,y); see equation (B24) 

Fourier coef f ic ien ts  i n  se r i e s  expansions 
f o r  N (x,O) and Nx(x,b) respectively; see 

equations (B25) and (€326) 

g; c1 mR/a , g; c1 mg/a 

thickness when p la t e  i s  i so t ropic  

X 

1,2,3, 03: 4 

Fourier coef f ic ien ts  i n  se r i e s  expansion 

a4F/aY4 ; see equation (B29) 

Fourier coef f ic ien ts  i n  se r i e s  expansion 
f o r  N ; see equation ( ~ 2 7 ) ;  see equation 

( ~ 5 8 )  f o r  value of j,, 

combinations of known Fourier coef f ic ien ts ,  
defined by equation ( ~ 6 7 )  

known quantity defined by equation (B72) 

sumat ion  indexes ( in tegers )  

XY 

upper l i m 3 t  on m, p, and q 

summation index ( integer)  n 

N upper l i m i t  on n 



Nx9 Ny9 Nxy 

RA, RL, R"' , R;" m 

s t  s l I  I , 
n' n' m 

TA, T", T l ' ,  TZ' 

ex te rna l  running tensions,  force per 
un i t  length; see figure 1 

p la t e  s t ress - resu l tan ts ,  force per 
un i t  length; see f igure  3 

summation index ( integer)  

s t i f f e n e r  cross-sectional tensions; 
see figure 3 

s t i f f e n e r  end loads; see f igure 1 

common value of the above when a l l  are 
equal; used i n  numerical example 

summation index ( integer)  

ex terna l  shear-flow loadings; see f igure  1 

Fourier coef f ic ien ts  i n  s e r i e s  expansions 
f o r  ql, q2, q3, 
equations (4) and (7) 

respectively; see 

combinations of known Fourier coeff ic ients ,  
defined by equations (B66) and (~67) 

Fourier coef f ic ien ts  i n  series expansions 
f o r  the  s t i f f e n e r  cross-sectional tensions; 
see equations (~17) 

Fourier coef f ic ien ts  i n  series expansions 
f o r  the  der ivat ives  of the s t i f f e n e r  cross- 
sec t iona l  tensions; see equations (B20) 
and (&2) 

Fourier coef f ic ien ts  i n  series expansion 

f o r  a2e /ha + a2ex/&2 ; see equation (6), 
a l s o  equations (8 ) ,  ( 9 ) ,  and (10) 

Y 

Fourier coef f ic ien ts  i n  series expansions 
f o r  thermal-s t r a i n  d iscont inui t ies  between 
s t i f f e n e r s  and p l a t e  edges; see equations 
(9 and (7) 
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U h ,  U L  

V 

v 
W P  

W" 'kmp, mmp 

X '  

h 

known quant i t ies  defined by equations (B7 l )  

p l a t e  displacement component i n  y-direction 

known quantity defined by equations ( ~ 7 6 )  
and (B77) 

known quant i t ies  defined by equations (B75) 

Cartesian coordinates; see figure 1 

dummy variable  representing x 

known quant i t ies  defined by equations (B73) 

Cartesian coordinate; see f igure  1 

dummy variables  representing y 

known quant i t ies  defined by ,equations (B74) 

known quant i t ies  defined by equations (B73") 

coeff ic ient  of t h e m 1  expansion of p la te  
and s t i f f e n e r s  i n  numerical example 

Kronecker's de l ta ;  un i ty  when both subscripts 
a r e  equal, zero otherwise 

1 f o r  m, p both even and q odd; 
1 f o r  m, p both odd and q even; 
zero otherwise 

known quantity defined by equation ( ~ 6 9 )  

pla te  t o t a l  s t r a i n s  

s t i f f e n e r  t o t a l  s t r a i n s  

temperature rise of p l a t e  center  r e l a t ive  
t o  the edges, used i n  numerical example 

Poisson's r a t i o  when p la t e  is i so t ropic  

prescribed s t i f f ene r  s t r e s ses ,  posi t ive 
f o r  tension 

4ah/ (n2A); area- ra t io  parameter u.sed i n  
presenting t h e  r e s u l t s  of t he  numerical 
examples. 



APPENDIX B 

ANALYSIS FOR THE CASE OF CONSTANT-AREA STIFFENERS 

Basic equations. - With u(x,y) and v(x,y) denoting the  x- and 
y-components of in f in i tes imal  displacement, the  strain-displacement 
re la t ions  f o r  the  p l a t e  a r e  

Equations (Bl) imply the following compatibil i ty condition on the  s t r a i n s  

The p la t e  equilibrium equations, namely 

imply the existence of a stress function F(x,y) such t h a t  

Nx = a2F/ay2 N = a 2 F / h 2  N = - a2F/h& (@+I Y XY 

Eliminating t h e  s t r a i n s  i n  equation (B2) by use of equations (2), and 
then the  s t r e s ses  by use of equations (a) leads t o  the  following form 
of the  compatibil i ty condition, i n  which account i s  already taken o f  the  
equilibrium and s t r e s s - s t r a i n  re la t ions :  

Considering now inf in i tes imal  lengths of t he  s t i f f e n e r s  as f r ee  bodies, 
and u t i l i z i n g  the  t h i r d  of equations (B4) t o  express N 

i n  terms of F, one obtains t h e  following equilibrium equations governing 
the longi tudinal  var ia t ions o f  the s t i f f e n e r  cross-sect ional  tensions : 

a t  the  p la te  edges 
XY 
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dP4/dx + (a2F/b&) + q (x) = 0 y=b 4 

I n t e g r a l  attachment between the  s t i f f e n e r s  and t h e  p l a t e  edges implies 
equal i ty  of t h e i r  longitudinal s t r a i n s  and leads t o  the  following 
add i t iona l  set of conditions on P1, P2, P and P4: 3' 

i n  which equations (2)  have been used t o  obtain the  right-hand terms. 
The assumption of negl igible  bending s t i f f n e s s  f o r  the s t i f f e n e r s  permits 
the subs t i t u t ions  (Nx)x=o = N (y), e t c .  t o  be made i n  these terms. 
ing the remaining s t r e s s  r e su i t an t s  i n  terms of F, one obtains 

Express- 

p 4 W  - a+ 
*4 E4 

+ [e4(x) - ex(x,b)] - C1 (-) + C N (X) = 0 &' y=b 3 4  
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The problem can now be stated es sen t i a l ly  as follows: t o  solve 
subject t o  

In  

equations (B3), (B6), and (B7) f o r  F, P1, P2, P3, and P 

boundary conditions a r i s ing  from the  prescribed forces  a t  the s t i f f e n e r  
ends and the  prescribed d is t r ibu ted  loadings Nly N2, N3, and N4. 

the  following sect ions a formal solut ion t o  t h i s  problem w i l l  be obtained 
i n  terms of Fourier series. 

4' 

1.' Boundary values of F. - The f ac t  t h a t  t he  d i s t r ibu ted  loadings N 

N -  N 
der1 , ive  of F i n  the d i rec t ion  of the  edge is known. Therefore two in te -  
grat ions w i l l  give the var ia t ion  of F along each edge i n  terms of the  unknown 
corner values and the  known N 1y N2, N3, N4. For example (using subscr ipts  on 

F now f o r  convenience t o  denote partial  d i f f e ren t i a t ion ) ,  

and N4 are transmitted d i r e c t l y  t o  the p l a t e  means t h a t  t he  second 2' .& 

Theref ore 
n Y $ 1  

Subst i tut ion of y = b i n  equation (B8) gives 

n b ,y' 

-0 -0 

which result, subs t i tu ted  back i n t o  equation (B8), gives 

Thus the  var ia t ion  of F along the edge x = 0 has been determined t o  within 
two constants, F(0,O) and F(0,b). 

equation ( 3 ) ,  and carrying out the integrat ions indicated i n  equation (Bg) 
give 

Replacing N (y") by i t s  series expansion, 1 

N 2 

F(0,y) = F(0,O) + [F(O,b) - F(0,0)] - C B' (b) s i n  b n= l  n nn 
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going through a similar procedure fo r  each of the remaining edges, one 
obtains 

N 2 

F(a,y) = F(a,O) + b [F(a,b) - F(a,O)] - ngl B; ($) s i n  b (B11) 

(I313 1 a mnx F(x,b) = F(0,b) + a  [F(a,b) - F(O,b)] - mgl B i "  (G) s i n  - 

For later use it w i l l  be necessary t o  have Fourier expansions of t he  

M X 

a 

boundary values of F i n  the  form 

N 
F(O,Y) = ngl "11 s i n  (nw/b) 

N 
F(a,y) = C at'  s i n  (nny/b) n = l  n 

M 
F(x,O) = 3 a''' s i n  (mnx/a) m-1 m 

M 
F(x,b) = 5 a"" s i n  (mnx/a) m-1 m 

Evaluating the coe f f i c i en t s  i n  these s e r i e s  through the  formulas 

a '  = ( 2 / b ) s  F(0,y) s i n  (nsry/b)dy, etc. ,  with F(O,y), e t c .  replaced 

by the right-hand s ides  of equations ( B 1 0 )  t o  ( B l 3 ) ,  one obtains 

b 

n 
0 

2 a '  = - 2 [F(O,O) - (-l)n F(O,b)] - (&) BA 
n nn 

2 b 2  a" = - [F(a,O) - (-l)n F(a,b)] - (--) B; n nn 



Series  assumptions f o r  F(x,y) and P1, P2, P3, P4. - In  the i n t e r i o r  

of the p l a t e  (i.e. i n  the  region 0 < x < a, 0 < y < b, excluding the  edges 
x = 0, a and y = 0, b) ,  the stress function F(x,y) w 2 l l  be assumed t o  be 
representable by the double Fourier series 

with as yet  unknown coef f ic ien ts .  
a t  the edges; however there  the values of F are already expressed i n  series 
form by equations (SI&) and (Bl5 ) .  
assumed i n  the  form 

Equation (~16) is ,  of course, not va l id  

Similar ly  the  s t i f f e n e r  forces w i l l  be 

M 
P+X) = mgl sg1 s i n  ("/a) 

p = silt s i n  (mJtx/a> 
4 m = l  

for a l l  cross sect ions except t h e  end cross sections.  A t  the  end cross 
sect ions the s t i f f e n e r  forces a re  already known from the given loading 
(see f i g .  1). 

The coef f ic ien ts  i n  the s e r i e s  i n  equations (~16) and ( S l y )  a r e  
re la ted  t o  the  left-hand s ides  through the  usual  formulas 

s i n  nJry d y d ~  mJtx 
b a -  mn ab 

0 0  
b 

s i  = E P,(y) s i n  7 dy , e tc .  n 
0 

Series  f o r  the  der ivat ives  of F(x,y) and PI, P2, P3, P4. - The 

der ivat ives  appearing i n  equations (€%!I) t o  .(B7) w i l l  a l s o  be assumed 
expressible i n  series as follows 



N 
n=O dPl/dy = C t; cos (nny/b) (0 ~ y z b )  

N 
dP2/dy = n=O C ti cos (nny/b) (0 1 . Y  1 .b)  

M 
dP /dx = m% ti' cos ( m n x / a )  ( 0 1 . x 1 . a )  

dP4/dx = m=O C t"" m cos ("/a) (0 1. x 1. a )  

3 

M 

O < x < a  M N  
= a2F/h2  = c 

Y m = l  n= ( o < y < b )  
N 5 cm s i n  ( m n x / a )  s i n  (nny/b) 

M N  
Nx = a2F/ay2 = m$ ns gm s i n  ( m n x l a )  s i n  (nny/b) 

4 4  M N  a F/& = 5 C e s i n  (mrrx/a) s i n  (nny/b) m= n= l  mn 

M N  
m = l  n= 

4 a F / h 2 h 2  = C % pm s i n  ("/a) s i n  (nny/b) 



where 

a b  

c mn = 4 ab J J  (a2F/h2) s i n  ("/a) s i n  (nrcy/b) dydx (B32) 
0 0  

a b  

'mn = ab lJ (a2F/&') s i n  ("/a) s i n  (nnylb) dydx (B35 1 
0 0  

a 

(2-€jmo) (2-sno) 
jmn - - ab jj ( a2F/h&)cos (mm/a)cos (nJry/b)dydx (B38) 

0 0  

a b  

e mn = " J J  ab (a4F/h4) s i n  (mJrx/a) s i n  (nny/b) dydx 0339) 
0 0  

a b  

i mn ='JJ ab (a4F/&4) s i n  (mx/a)  s i n  (nny/b) dydx p + o  1 
0 0  

a b  

'mn = 'fl ab (a4F/h2&') s i n  ("/a) s i n  (nnylb) dydx (&1) 
0 0  

The coef f ic ien ts  appearing i n  the  s e r i e s  f o r  the der ivat ives  (equa- 
t ions  (BX)) t o  (B3O)) are ,  of course, not independent of t he  coef f ic ien ts  
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i n  the series f o r  the  basic  quant i t ies  (equations (~16) and ( B l 7 ) ) .  
former can be expressed i n  terms of the l a t t e r  by means of integrat ions 
by parts i n  the  right-hand s ides  of equations ( B 3 l )  t o  (&1)*. For 
example, from equations ( ~ 3 1 )  

The 

nn [Pl(b) cos nrr - P1(0)] + - s' - - 'no 
- b  b n  

nn [P2(b) cos nn - P2(0)] + SI' n b n 
t" = - 'no 

Similarly two partial integrat ions with respect t o  x i n  equation (B32) 
give 

(B43 1 m 2  mn 
= - - [a; - (-11~ ail  - (--I c am mn a a  

Two with respect t o  y i n  equation (B35) give 

I n  equation ( ~ 3 8 )  partial in tegra t ion  with respect t o  x, followed by 
partial in tegra t ion  with respect t o  y i n  both of t he  resu l t ing  terms, gives 

(2-smo) (2-6 1 
- no - [ (-l)m+n F(a,b)- (-l)m F(a,O)- (-l)n F(0,b) + F(O,O)] j m -  . ab 

Such a technique w a s  employed f o r  p l a t e  bending problems by A. E. Green 
(reference l), who ascr ibes  i t s  e a r l i e r  use t o  S. Goldstein. 
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i n  which single-valuedness of F a t  the  corners has been assumed. Proceed- 
ing i n  a s i m i l a r  fashion with the right-hand s ides  of equations (B39) t o  
(al), one obtains 

[(-1)"+" F(a,b) - (il)m F(a,O) - (-l)n F(0,b) + - 4 mlr nn - - - -  
'mn ab a b 

(@+8) 

Subst i tut ion of series in to  the basic  equations. - Through equations 
(B42) t o  (B48) a l l  the  unknown coef f ic ien ts  i n  the  der ivat ive se r i e s  a re  
expressed i n  terms of t he  basic  unknowns am; cAY c", gAy gi; s '  

si'!; F(a,b), F(a,O), F(O,b), and F(0,O). Relationships among these unknowns 
w i l l  now be obtained by subs t i tu t ing  the  assumed series i n t o  the basic  equa- 
t ions  (B5), (B6), and (B7). 

s" S I "  
n' n' m ' 

Considering first equation (B5) subs t i tu t ing  i n t o  it the  series 
expansions from equations (6) and ( ~ 2 8 )  t o  ( B ~ o ) ,  and eliminating e 

and p through equations (&6) t o  (B48), one obtains 

i mn' mn' 

m 

4 mx nsr [ (-l)m+nF(a,b)- ( - l ) ? F ' ( a , O ) - ( - l ) n  F(0,b) + F(0,0)] 

Solving t h i s  equation f o r  a 

equations (B l5 )  one obtains 

and eliminating a;, a:, art1 , and a"" through mn m 
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4 
mn n2 

a = - [ (-1)"'" F(a,b) - (-l)m F(a,O) - (-l)n F(0,b) + F(0,0)] mn 

2 mn m 2 nn 
a a  [g:, - (-on g;1 c1 

where 
4 mn nn 4 

Emn = c 2 (E) a + (c4 - 2c3) ($ + c1 

Thus through the  compatibil i ty equation the  unknown a have been expressed mn 
i n  terms of a smaller c l a s s  of unknowns, namely the  e;, e;, g; and g;. 

the  s e r i e s  from equations (B20) ,  (B27),  and (4), and u t i l i z i n g  equations 
(B42), one obtains the re la t ionships  

Turning now t o  the s t i f f e n e r  equilibrium equations (B6), subs t i tu t ing  

M nrr 
[ ( - l ) n  P2(b) - P2(0)] + s l  + &II + C jm(- l )m= 0 (n=O,l, ..., N )  - 'no 

b m=O 
0352) 

The n = 0 and m = 0 equations of t h i s  group w i l l  be s tudied f irst .  
equation (&5) ,  i n  conjunction with ( B l g )  and (&9), it is  noted t h a t  

From 
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Therefore equations ( B Y )  and (B52) for n = 0, (B53) and (B54) f o r  
m = 0 give 

M 
P2(b) - P 2 IO) + bQi + bj,, - m= 5 ( a / m n ) ( B i "  - B:f)(-l)m = 0 (B57b) 

N 
P3(a) - ~ ~ ( 0 )  - a%' - a j ~ ~  + n=l  (b/nsr)(Bi - BA) = 0 (B57c 1 

N % (b/nn)(Bi - BA)( - l )n  = 0 n= Pq(a) - P4(0) + a&;;" + ajOO - 

Three of equations (B57) are redundant i f  the  applied loading const i tutes  
an equilibrium system f o r  the s t ruc ture  as a whole: It is  easily ver i f ied  
t h a t  the  equation of equilibrium of forces i n  the  x-direction is  the same 
as t h a t  obtained by adding equations (c)  and (d),  the  equation of equilibrium 
f o r  the  y-direction the  same as the  sum of equations (a) and (b), and the 
equation of equilibrium of moments about the center  of the p la te  equivalent t o  
,(a/2)[eq.(a) - eq. (b)]  + (b/2)[ey. (d)-eq. (GI] 0 Hence any three of equations 
(B57) may be eliminated from fur ther  consideration. 
t i o n  serves t o  e s t ab l i sh  the value of j 
remaining one gives 

The one remining  equa- 
Select ing equation (a) as t h i s  00' 

Three a l t e rna te  expressions f o r  j can be obtained from equations (b), 
(e),  and (d). 
f o r  joo and divide by four  i n  order t o  obtain s t i l l  another formula f o r  
j - while e s the t i ca l ly  more sa t i s fy ing ,  t h i s  formula i s  more complicated 
t!?% equation (B58).  

00 For the  sake of symmetry one can sum a l l  four expressions 

Finally,  equations (B7),  with the various terms replaced by t h e i r  
s e r i e s  expansions from equations ( 3 ) ,  ( 5 ) ,  (B22), (B23), (B25), and ( ~ 2 6 ) ,  
give 
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s,l/(A E ) + TA - C2CA + C B,! = 0 
11 3 

s ; / ( A ~ E ~ )  + T; - c2c; + C ~ B ;  = o 

s"'/(A E ) + TZ' - C g' + C B f "  = 0 m 3 3  l m  3 m  

I n  obtaining equations (B59),  the  assumption of uniform s t i f f e n e r s  w a s  used 
f o r  the f i rs t  time. 

Reduction i n  the  number of simultaneous equations. - Equations (B31) 
t o  (B34.7, with the n = 0 and m = 0 equations excluded, can be used t o  obtain 
a system of simultaneous equations i n  which the c,!, c;, g; and g; a re  the 

only unknowns. This i s  accomplished by eliminating s '  SI' s" '  and s'"' with 

the  a i d  of equations (B?g),  and jmn by means of the following expression 
n' n' m ' m 

2 nfl 
b b  [c,! - ( -1 )m e;] c2 + - - - mf12 2 msc jm - - - {Tm + - - 

ab Em a a  

3 2 nlr + $- {E (y) 3 [ B i t  - (-l)n B;"] C2 + ;; (r) [Bh-(-l)%;]Cl} ( g o )  

mn 

which i s  obtained from equations (B45), (B15),  and The resu l t ing  
system of simultaneous equations i s  
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- 
c - (-l)m 2, 

Emn 

n (m=1,2,. . . ,M) 2 m n 2  N 
= R"" + a (y) c (-l)n m n = l  

- - 
c '  = cAC2 nn/b , E; = c;C2 nn/b , g; = g'C m/a , < = g"C mn/a (B63) 
n m l  m l  

and RA, R:, R I I ?  

loading quant i t ies  : 

R i l l  are the  following combinations of known thermal and m '  

2 b M 
R' = + -[P (0 ) - ( - l )n  Pl(b)] + - (B'-B") + AIEl y(C3BA+TAl - & Kmn n b 1  ann n n 

Equations (~61) t o  (B65) can be solved simultaneously for the  c '  c" nJ n' 
g;, and g". 

SA, si, 

With these known, equations (B5g) w i l l  furnish the  values of m 
1' f t sl ' ' '  9 and equations ( B ~ o ) ,  (B38), and (B56) the values of t he  
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jm. 
t o  (B27) the  p l a t e  stresses. 

Equations (Bl7)  w i l l  then give the  s t i f f e n e r  s t resses ,  equations (B21) 

Further reduction i n  the  number of simultaneous equations. - Equations 
(~61) and (B62), wr i t t en  f o r  the  s a m e  value of n, can be solved f o r  each -6' n and Z: i n  terms of a l l  t he  z' and g", with the  r e s u l t  m m 

where 

2 2 2 m  
A = [A E + u ] [ A 2 E 2  + { w ] - [ ; m 5 ( - ' E  2 M mrt a )  (-1) ] 2  

a m= 'mn mn mn n 1 1 a m = l  

Using equations (B68) t o  eliminate the 
(B64), one obtains the  following system of simuytaneous equations 
involving only the 

and c" i n  equations (B63) and 
- and 2'' a s  unknowns: m 

(m = 1, 2, ..., M) 
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where 

1 & = RA + Y h  R: - (-l)m [% R" + Y h  RA n 

2 M (p?/a>2 X& = AIEl + C p=l  E 
c Pn 

2 (nlr/b)2 A E  + -  
Emn 

4 4 c n=l  Em 

xr;lln'= 3 3 b n= l  

2 (nsr/b)2 = A E  + 



1 f o r  m and p both 
even, q odd 

1 for m and p both 
odd, q even 

0377) r 0 otherwise 

= 6 1 [l- (,1)P+9 - (-1)q+m + (-l)m+p]= 
6mPq 

The advantage of t h i s  preceding s t ep  is  evident: Whereas the  o r ig ina l  
system, equations ( ~ 6 1 )  t o  ( ~ 6 4 ) ,  requires the  so lu t ion  of 2N + 2M simul- 
taneous equations, the  reduced system, equations (BTO), contains only 2M 
simultaneous equations. Thus N m y  be taken a r b i t r a r i l y  large without 
increasing the  number of simultaneous equations tha t  have t o  be solved. 

Special  case: symmetry about y = b/2. - If the s t ructure ,  loading, 
and thermal s t r a i n s  are symmetrical about t h e  l i n e  y = b/2, then a corre- 
sponding symmetry obtains i n  the s t r e s s  flmction F and i n  the p la te  and 
s t i f f ene r  s t resses .  Consequently one may s e t  

In  place of equations (~61) t o  (B64) the  following system re su l t s :  

(n = 1, 3 ,  ..., N )  

(B62') 

(n = 1,3, ..., N)  



4 (n?r/b)21 
+ E n=15, . .  Em 

(m = 1,2,..., M) 

where N i s  now r e s t r i c t e d  t o  odd integers .  

Correspondingly, i n  place o f  equations (B7O) the following system is  
obtained. 

(m = 1,2,..., M)  

where the primed symbols are defined as before through equations (B 'p ) ,  
(B74) and (B75), but with the understanding t h a t  wherever a summation 
with respect t o  n appears i n  these def in i t ions  n s h a l l  now take on only 
odd values. The number of equations i n  the system (B7O') is M, regard- 
l e s s  of t he  value selected f o r  N. 

Special  case: symmetry about y = b/2 and x = a/2. - A f'urther 
reduction i n  the  number ozimultane-s i f  the  s t ruc ture ,  
l o a d i q ,  and them+ s t r a i n s  a re  symmetrical about both center l ines ,  
y = b/2 and x = a/2. In t h i s  case 

- 
= ,,I = 0 fo r  n n  

I - 
g; = = 0 f o r  

f o r  c '  = 21 - 
n n  

for - 1 1  - 
t3; = gm 

n even 

m even 

n odd 

m odd 

Equations (~61') t o  (B63') a r e  replaced by 
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(n=l,3,. . . , N) 

(m=l,3, .  . ., M) 

where M and N are now r e s t r i c t e d  t o  odd integers .  

Eliminating t h e  i n  equation ( 6 3 " )  by means of equations ( ~ 6 1 " )  
gives the  following system of simultaneous equations i n  the g' alone, 
which takes the  place of equations (B7O'):  m 

(m=1,3,. . ., M) 
where 

Regardless of how large a value is  assigned t o  N, there  are only (M+1)/2 
simultaneous equations i n  the system (B7C"). .. 

. 
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Limiting case of large s t i f f e n e r  areas.  - The case i n  which the 
s t i f f e n e r  cross-sectional areas are large compared t o  the p l a t e  cross- 
sec t iona l  area i s  of p rac t i ca l  and theo re t i ca l  i n t e re s t .  In  order t o  

A E and A4E4 a l l  study t h i s  case, l e t  it be assumed tha t  A1ElY A2E2, 

approach i n f i n i t y  while maintaining constant r a t i o s  with each other. 
Then equations ( ~ 6 1 )  t o  ( ~ 6 4 )  degenerate t o  

3 3  

- 
= R;~/(A E ) < = (Ri"/(A4E4) 'm 3 3  

Thus f o r  t h i s  l imi t ing  case it is  unnecessary t o  solve simultaneous 
equations. 

Equations (B80) represent a f i r s t -o rde r  perturbation solut ion of 
equations ( ~ 6 1 )  t o  ( ~ 6 4 ) ~  i n  which the coef f ic ien ts  of RA/(A E ), 
R"/(A2E2), e t c .  are expanded i n  se r i e s  of powers of (a3 EllAIEl) 

only the  zeroth power retained. If terms of the  zeroth and f i rs t  degree 
are retained, the following more accurate r e s u l t s  are ar r ived  a t :  

-1 
and n. 

L J 

2 N (nJc/b)2(-l)n 
A E  n=l  Em + -  c 

A4E4- 
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It i s  seen that  a solut ion t o  t h i s  degree of approximation s t i l l  r e t a ins  
the s impl ic i ty  of equations (Bm), i n  the sense t h a t  it i s  unnecessary t o  
solve simultaneous equations t o  determine the  C' 5:' and E'' The coef- 

f i c i e n t s  of RA/(AIEl), e t c .  i n  equations (B81) t o  (~84) are  correct  t o  terms 

of the first degree i n  (a3E A El)-'. To obtain expressions of grea te r  
accuracy it would once a g a i i W  necessary t o  solve simultaneous equations. 

n' m* 
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APPNNDIX C 

ANALYSIS FOR THE CASE OF CONS'L'ANT-STRESS 

(OR PRESCRIBED-STRESS ) STIP'P'ENERS 

If the s t i f f e n e r  cross sect ions a r e  varied so  as t o  produce i n  each 
s t i f f e n e r  a constant (or non-constant but prescribed) stress everywhere 
along i t s  length, then the  determination of t he  p l a t e  s t r e s s e s  becomes 
extremely simple, f o r  i n  t h a t  case the normal s t r e s s  i n  the  adjacent p l a t e  
i n  a d i r ec t ion  p a r a l l e l  t o  t h e  s t i f f e n e r  i s  e s s e n t i a l l y  given, and conse- 
quently the c;, c", g;, g i  i n  equations (B2%), (B23), (B25), and ( ~ 2 6 )  are 
known. e t c .  
were unknown.) With these quant i t ies  known, equations ( ~ 6 0 )  , (B58),  (B56), 
and then (B21), (B24), and (B27) w i l l  furnish the  remaining p l a t e  s t r e s s e s .  

(This is  i n  contrast  t o  the constant-area case, i n  which the c '  n' 

To ca r ry  out t he  foregoing analysis  i n  d e t a i l ,  l e t  u,(y), cr2(y), u3(x), 

u (x) denote the prescribed, perhaps constant, values of the s t r e s s e s  (Pi/A ) 4 i 
i n  the s t i f feners  a t  x = 0, x = a, y = 0, and y = b respect ively.  Then the 
s t r a ins  i n  these s t i f f e n e r s  a r e  known from equations (1). Equating these t o  
the corresponding p l a t e  s t r a ins  adjacent t o  the  s t i f f e n e r ,  equations (2)J gives 

e3 + (u 3 3  /E L- ex(x,O) + c ~ N ~ ( x , o )  - c 3 3  N (x) 

whence 

e t c .  

Subst i tut ing the known right-harid. sI~~ZF: : :  of equations (C2) i n t o  equations 
(B33) , (B34) , ( ~ 3 6 ) ,  and (B37), anti (.xir:ryir:g tiut t he  integrat ions,  one 
obtains the  values of t he  c 1  

can be found as indicated i n  the previous psi-agraph. 

c::, g l ,  m d  g " ,  from which the  p l a t e  s t r e s s e s  
11' II 1 I11 



In order t o  determine the  var ia t ions of s t i f f e n e r  cross-sectional area 
required t o  produce the prescribed s t i f f e n e r  s t r e s ses ,  the relat ionships  

may be used, with P (y) etc. evaluated by integrat ing the running loads 
on the s t i f f e n e r s ,  i t a r t i n @ ;  a t  one end, as shown below. 

Similarly 

(c6) m m  
a jm s i n  -) N M a  

P 3 (x) = P 3 (0) + s q3(x' 1 + ngo (XjOn + mgl ;;;;; 
0 
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Figure 1. - Structure and load'ing. 
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Figure 2. - Thermal straim shown schematically. 
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Figure 3. Nokation f o r  s t i f f e n e r  and plate ,fences. 

P P 

I 
P B 

S t i f f e n e r  temp. = 0 
IM PLate temp, = e s i n  - s i n  LE a a 

Coeffircien't of expansion = a 

(a) Thermal-stress problem (b ) "Shear- l a g  " problem. 

Figure 4. - Problems considered f o r  numerical examples. 
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Figure 5. - Varia t ion  of dimensionless p l a t e  and s t i f f e n e r  forces  f o r  
t h e  thermal -s t ress  problem. (a) A z k h / ( l r 2 A )  = 0.0. 
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Figure 3. - Continued. (b> h 4ah/(n2A) = 0.1; dashed curves represent 
approximate solution using equations (&). 
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Figure 5.  - Concluded. 
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Figure 6. - Variation of dimensionless plate and s t i f f ene r  forces f o r  
the shear-lag problem. (a) A 4ah/(g2A) =I 0.0 . 
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Figure 6. - Continued. (b) X 4ah/(lr2A) = 0.1; dashed .curves represent 
approxwte solution using equatiom (1381) t o  (a). 
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Figure 6 .  - Concluded. ( c )  h 4ah/(n2A) = 1.0 . 
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